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Ketones containing N-aryl-substituted oxazolidinones have been prepared and investigated for the epoxidation of cis-#-methylstyrene, styrene,
and 1-phenylcyclohexene. The attractive interaction between the phenyl group of the olefin and the oxazolidinone of the catalyst is enhanced
by introducing an electron-withdrawing group onto the N-phenyl group of the catalyst. The information obtained gives a better understanding
of the ketone-catalyzed epoxidation. In addition, the easy preparation of some of the ketones makes them good candidates for practical use.

Asymmetric epoxidation of olefins presents a powerful of olefins?=® In our own studies, we have shown that
strategy for the synthesis of enantiomerically enriched fructose-derived keton& (Scheme 1) is a very effective
epoxides: High enantioselectivity has been achieved for

the epoxidation of allylic alcohols,the metal-catalyzed _

epoxidation of unfunctionalized olefins (particularly for Scheme 1
conjugatectis- and trisubstituted olefing)and the nucleo- ol
philic epoxidation of electron-deficient olefiiDuring the o>( oX oA /=

. . . . . O O O NR O N /
past few years, dioxiranes generated in situ from chiral Kl/ (/\L/ VAN WP
ketones have shown promise for the asymmetric epoxidation o o 0 o Y Yo 2a,X=pOMe 2d X=pNO,

)VO )(5 0 2, X=pMe  2e,X=0NO;
1 2 2¢, X = p-MeSO,
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2 containing an oxazolidinone provides encouragingly high the enantioselectivity of the epoxidati&nThe influence of
ees for the epoxidation ofis-olefins and styrenésOur the N-substituents on the enantioselectivity is believed to
earlier studies suggest that electronic interactions play anbe electronic rather than steric in natétd.o further probe
important role in stereodifferentiation. It appears that there the interaction, ketone®a—e (Scheme 1) with substituents
is an attractive interaction between the oup and the  on the phenyl group were prepared, and the effect of varying
oxazolidinone moiety of the ketone catalyst in the transition the substituents on the enantioselectivity of the epoxidation
state (Scheme 2)!° As a result, groups withr systems (R) was studied. Herein, we report our preliminary efforts on
this subject.

_ The syntheses of keton@a—eare outlined in Schemes

Scheme 2 3—5. Briefly, ketone2a,b were prepared fronm-glucose
£
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could be significantly differentiated from those without 0
electrons (R), leading to high enantioselectivity for the
: (R) 9 9 y 0§ NHar 1) COCL 0§ Nar
reaction it base R/\L
.Our stu?‘leﬁ hl?\le also shlownhthat the.sug_stltuent; on the - + “oH 2) PDC O 2a, Ar= pMeO-Ph
nitrogen of the ketone catalyst have a significant effect on /\VO )<O 2b, Ar = p-Me-Ph
(6) For leading references on asymmetric epoxidation mediated in situ 4a, 74% 2a, 36% from 4a
by chiral ketones, see: (a) Curci, R.; Fiorentino, M.; Serio, MJRChem. ab. 87% 2b, 60% from 4b

Soc., Chem. Commuh984, 155. (b) Curci, R.; D'Accolti, L.; Fiorentino,
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Y.-C.; Chen, J.; Cheung, K.-KI. Am. Chem. Sod 998,120, 7659. (0) Scheme 4
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ylcyclohexene as substrates. As shown in Table 1, in the o . -
case okis-f-methylstyrene, the ee increased from 83 to 90% olefins and the oxazolidinones of the catalyst in the transition
from the electron-donating MeO group to the electron- state. These results, along with our earlier observafions,

withdrawing sulfone and nitro groups. These results suggestSU99€st that the attractive interaction between therup

and the oxazolidinone moiety of the ketone catalyst in the

transition state (Scheme 2) can be strengthened by a group
that can withdraw electrons from the oxazolidinone through

Table 1. Asymmetric Epoxidation of Olefins Catalyzed by

Ketones2a—e*

Q/Ph

conjugation.

It is interesting that in the case of styrene, the ee remained
the same (7980%) regardless of whether an electron-
donating or electron-withdrawing group was attached to the
N-phenyl group of the catalyst. Our earlier studies suggest

Pm P X

Bntry Ketone  Conv. (ee) (%)°  Conv.(ee) (%)°  Conv. (ee) (%) that in addition to spird, transition state planas is also

. 2a 71 (83) 2R3S) 56 (80) (R) 53 (26) (R.R) competing with the favored transition state sgr¢Scheme

2 2 60 (84) 2R3S) 60 (80) (R) 61 (25) (R.R) 7)8¢The introduction of an electron-withdrawing group onto
3 2e 72(90) 2R3S) 61 (80)(R) 58 (22) (S.5)

Poa soosn e socy

5 2e 59 (78) 2R38)  55(6)(R) 48 (59) (R.R)

Scheme 7

a All reactions were carried out with olefin (0.2 mmol), ketone (0.02
mmol), Oxone (0.356 mmol), and ;KO3 (0.804 mmol) in DME/DMM
(3:1, viv) (3 mL) and buffer (0.2 M BCO;—AcOH, pH 8.0) (2 mL) at N
—10 °C. Reactions were stopped after 3.3 kConversion and enantio- E v/ —Ph oo/ —H

oK oK

selectivity were determined by chiral GC (Chiraldex B-DM).
: O :
PO SO
Spiro (E) Spiro (F)

Favored

Planar (G)

that the interactions between the phenyl group of the olefin
and the oxazolidinone moiety of the catalyst in transition
state spiroA (Scheme 2) are influenced by the electronic

nature of the substituents on the N-phenyl groups and favoredy,e N.phenyi of the catalyst enhances the interaction between
by electron-withdrawing groups. The lower ee obtained with o phenyl group of the olefin and the oxazolidinone of the

2eis probably due to the fact the N-phenyl groupZeis catalyst in both spir®E and planarG. As a result, no net

no longer coplanar with the oxazolidinone due to the presencejncrease in enantioselectivity is observed. This result suggests

of the ortho nitro group on the phenyl group. that the major competing transition state for styrene is planar
The substituent effect on the enantioselectivity is even G rather than spird-.

more explicitly displayed in the epoxidation of 1-phenyl-  |n summary, the asymmetric epoxidation of olefins using
cyclohexene. As shown in Table 1, the,R)-isomer was  N-aryl-substituted oxazolidinone-containing ketorgss—e
obtained withp-MeO andp-Me groups, and theSS)-isomer  as catalysts has been investigated. The results show that the
was obtained withp-MeSQ and p-NO;, groups, indicating  attractive interaction between the phenyl group of the olefin
that planaiD became a major transition state when electron- and the oxazolidinone of the catalyst is enhanced by
withdrawing groups were attached to the N-phenyl group of introducing an electron-withdrawing group onto the N-phenyl
the catalyst (Scheme 8).Clearly, electron-withdrawing  group of the catalyst. The information obtained in this study
groups on the N-phenyl group of the catalyst further enhance gives a better understanding of the factors involved in ketone-
the attractive interactions between the phenyl groups of the catalyzed epoxidation and provides useful insight for design-

Org. Lett.,, Vol. 5, No. 3, 2003 295



ing new catalysts. In addition, the easy preparation of some Supporting Information Available: Epoxidation proce-

of the ketones makes them good candidates for practical usedure, syntheses of ketone catalysts, and GC data for the
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